Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments.
نویسندگان
چکیده
Boron-doped diamond (BDD) ultramicroelectrode (UME) tips were fabricated by the growth of BDD films by chemical vapor deposition onto sharpened tungsten wires. Both nanocrystalline and microcrystalline forms of diamond coatings were examined. The diamond-coated wires were selectively insulated with nail varnish, electrophoretic paint, or fast-setting epoxy to form UME tips of critical dimensions of 1-25 microm. The geometry of the exposed electrode area was disk or hemispherical in most cases. Cyclic voltammetry and chronoamperometry were used to assess exposed electrode area and integrity of the insulation. BDD UMEs were used to obtain SECM approach curves to an insulating and a conducting substrate, which were fitted to the theory appropriate for the observed tip geometry. The tips were used to obtain SECM images of immobilized respiring E. coli, illustrating the suitability of BDD UMEs for electrochemical imaging in biological media.
منابع مشابه
Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes.
The fabrication of ultramicroelectrodes (UMEs) for analytical electrochemical applications has been explored, using boron-doped diamond as the active electrode material in an insulating coating formed by deposition of electrophoretic paint. Because of the rough nature of the diamond film, the property of such coatings that is normally exploited in the fabrication of UMEs, namely the tendency to...
متن کاملFacile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity
The Atmospheric Pressure Chemical Vapor Synthesis (APCVS) route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the am...
متن کامل2-Dimensional micro-network of boron-doped diamond film: fabrication and electrochemical sensing application.
By means of delicate and conventional methods based on photolithography and hot filament chemical vapor deposition (HFCVD) technology, a novel boron-doped diamond micro-network (BDDMN) film was fabricated, and this micro-structure showed excellent electrochemical sensing properties.
متن کاملEnhanced capacitance of composite TiO2 nanotube/boron-doped diamond electrodes studied by impedance spectroscopy.
We report on novel composite nanostructures based on boron-doped diamond thin films grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (∼200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) o...
متن کاملElectrostatic force microscopy studies of boron-doped diamond films
Much has been learned from electrochemical properties of boron-doped diamond (BDD) thin films synthesized using microwave plasma-assisted chemical vapor deposition about the factors influencing electrochemical activity, but some characteristics are still not entirely understood, such as its electrical conductivity in relation with microscale structure. Therefore, to effectively utilize these ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2007